Roots of quadratic equation formula
we know that ax2+bx+c=0
then ax2+2(b/2a)x+(b/2a)2-(b/2a)2+c=0
⇒ (x+b/2a)2=(b/2a)2-c
⇒x+b/2a= ±√((b/2a)2-c)
⇒x=-b/2a±{√((b)2-4ac)}/2a
x={-b±√((b)2-4ac)}/2a
hense, the Roots of quadratic equation formula
x = {−b + √(b2 − 4ac)}/ 2a
x = {−b -√(b2 − 4ac)}/ 2a
the Roots of quadratic equation
then ax2+2(b/2a)x+(b/2a)2-(b/2a)2+c=0
⇒ (x+b/2a)2=(b/2a)2-c
⇒x+b/2a= ±√((b/2a)2-c)
⇒x=-b/2a±{√((b)2-4ac)}/2a
x={-b±√((b)2-4ac)}/2a
hense, the Roots of quadratic equation formula
x = {−b + √(b2 − 4ac)}/ 2a
x = {−b -√(b2 − 4ac)}/ 2a
Q.the sum of the roots of the quadratic equation 3x²-9x+5 =0 is
solution:-Given 3x²-9x+5 =0
here,a=3 ,b=-9 ,c=5the Roots of quadratic equation
{-b±√(b^2-4ac)}/2a
Put
⇒x=[-(-9) ± √{(-9)^2-4×3×5}]/2×5
⇒x=[9 ± √{81-60}]/10
⇒x=[9 ± √21]/10
If take first + sign then
⇒x=[9 + √21]/10
If take - sign then
⇒x=[9 -√21]/10
hense, the Roots of quadratic equation x={9+ √21}/6,{9- √21}/6
If take - sign then
⇒x=[9 -√21]/10
hense, the Roots of quadratic equation x={9+ √21}/6,{9- √21}/6
Q.The sum of the roots of the quadratic equation 3x²-2√6x+2=0 is
solution:- given equation 3x²-2√6x+2=0
here a=3 ,b=-2√6, c=2
the Roots of quadratic equation
{-b±√(b^2-4ac)}/2a
Put
⇒x=[-(-2√6) ± √{(-2√6)^2-4×3×2}]/2×3
⇒x=[2√6 ± √{24-24}]/6
⇒x=[2√6± 0]/6
If take first + sign then
⇒x=[2√6 + 0]/6
x=2√6/6
x=√6/3
If take - sign then
⇒x=[2√6- 0]/6
If take - sign then
⇒x=[2√6- 0]/6
x=2√6/6
x=√6/3
hense, the Roots of quadratic equation are equal √6/3 , √6/3
hense, the Roots of quadratic equation are equal √6/3 , √6/3
find the roots of the quadratic equation 3x2-2√6x+2=0
solve x^2-6x+2=0 by completing the square
6x²-x-2=0
solve the following quadratic equations for x: 4 3x 2 + 5x − 2 3 = 0
the sum of the roots of the quadratic equation 3x^2-9x+5=0 is
,
x^2-6x-2=0 quadratic formula