If pth qth and rth term of an ap are a b and c respectively then show that (a-b)r+(b-c)p+(c-a)q=0
solution:-
माना की प्रथम पद =k
A.P के p वें पद =k +(p-1)d =a
A.P के q वें पद =k +( q-1)d =b
A.P के r वें पद =k +(r-1)d =c
L.H.S=
a(q-r) + b (r-p) + c (p-q){k+(p-1)d}(q-r)+{k+(q-1)d}(r-p)+{k+(r-1)d}(p-q)
=0 proved
Q.if pth term of an ap is q and qth term is p then show that (p+q)th term is 0.
solution:- Given that
ap=q & aq=p
now,
a+(p-1)d=q
a+(q-1)d=p
after solving,
a=p+q-1
d=-1
ap+q=a+(p+q-1)d
=p+q-1+(p+q-1)x-1
=p+q-1-p-q+1
=p-p+q-q+1-1
=0 ans