prove that (1+sinA+cosA)^2 =2(1+sinA)(1+cosA)
Type Here to Get Search Results !

prove that (1+sinA+cosA)^2 =2(1+sinA)(1+cosA)

 LHS=(1+sinA+cosA)

=(1+sinA)+2(1+sinA)(cosA)+(cosA)

=(1+sinA)2 +2(1+sinA)(cosA)+1-(sinA)2

✱using formula=(a)2-(b)2

=(1+sinA)2 +2(1+sinA)(cosA)+(1+sinA)(1-sinA)

=(1+sinA)(1+sinA+2cosA+1-sinA)

=(1+sinA)(2+2cosA)

=(1+sinA)2(1+cosA)

=2(1+sinA)(1+cosA)

Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.

Top Post Ad

Below Post Ad

Ads Section