solution:-
let 1st term=k
pth term of A.P=k +(p-1)d =a
qth term of A.P =k +( q-1)d =b
rth term of A.P=k +(r-1)d =c
L.H.S=
a(q-r) + b (r-p) + c (p-q)
{k+(p-1)d}(q-r)+{k+(q-1)d}(r-p)+{k+(r-1)d}(p-q)
kq-kr+pqd-qd-pdr+dr+kr-kp+qdr-qr-qdp+dp+kp-kq+rdp-dp-rdq+dq(over all are zero after solving)
=0 proved