2(sin^6x+cos^6x)-3(sin^4x+cos^4x)+1=0
Type Here to Get Search Results !

2(sin^6x+cos^6x)-3(sin^4x+cos^4x)+1=0

 solution:- 

LHS = 2(sin6x + cos6x )- 3(sin4x + cos4x) + 1  

{using this formula (a6 + b6)-click here & (a4 + b4)-click here}

 2(sin2x + cos2x ){(sin2x + cos2)2-  3(sin2x . cos2x)} -3{(sin2x + cos2)2- 2 sin2x . cos2x } +1

2(1) {(1)2- 3(sin2x . cos2x)} -3{(1)2-2 sin2x . cos2x } +1

2(13sin2x . cos2x)-3(1- 2 sin2x . cos2x ) +1

2 - 6sin2x . cos2x -3 + 6sin2x . cos2x +1

2-3+1

3-3

=0 

=RHS proved 

           

Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.

Top Post Ad

Below Post Ad

Ads Section