solution
Let a and d is first term and common difference of AP.
According to Question,
m times the mth term is equal to n times the nth term
man = nan
m(a + (m-1)d)= n(a + (n-1)d)
ma + m^2d - d = na+n^2d -nd
ma -na + m^2d - n^2d = md -nd
a(m - n) + d(m^2 - n^2)=d(m - n)
a(m - n) =d(m - n) - d(m+n)(m-n)
a(m - n) =d{(m - n) - (m+n)(m-n)}
a(m - n) =d(m - n){1 - (m+n)}
a=d{1 - (m+n)}
now, (m+n)th term is
a(m+n) = a + (m+n-1)d
a(m+n) = d{1 - (m+n)}+ (m+n-1)d
a(m+n) = d - md - nd+ md + nd - d
a(m+n) =0