lim x → ∞ (1+1/x)^x
solution:-
let L=lim x → ∞ (1+1/x)^x
first find form of this limit
put x= ∞
(1+1/∞)^∞
(1+0)^∞
1^∞=1
Now we can using this rule,
L=e^lim x → ∞ x(1+1/x -1)
L=e^lim x → ∞ x(1/x)
L=e^lim x → ∞ x/x
L=e^lim x → ∞ 1
L=e^1 answer
Proof of (1+1/n)^n=e