prove that lim n→∞ (1+1/n)^n=e
let L=lim n → ∞ (1+1/n)^n
first find form of this limit
put n= ∞
(1+1/∞)^∞
(1+0)^∞
1^∞=1
Now we can using this rule,
L=e^lim n → ∞n(1+1/n -1)
L=e^lim x → ∞n(1/n)
L=e^lim x → ∞ n/n
L=e^lim x → ∞ 1
L=e^1=e answer
prove that lim n→∞ (1+1/n)^n=e
let L=lim n → ∞ (1+1/n)^n
first find form of this limit
put n= ∞
(1+1/∞)^∞
(1+0)^∞
1^∞=1
Now we can using this rule,
L=e^lim n → ∞n(1+1/n -1)
L=e^lim x → ∞n(1/n)
L=e^lim x → ∞ n/n
L=e^lim x → ∞ 1
L=e^1=e answer