Solution:- let the given cubic polynomial p(x)=x^3-3x2+x+1
and given zero are a-b,a,a+b.
then we know that
sum of zeros=-coefficient of x^2/coefficient of X^3
a-b+a+a+b=-(-3)/1
3a=3
a=1
product of Zero=-constant ter/coefficient of x^3
(a-b).a.(a+b)=-1/1
(1-b).1.(1+b)=-1
1^2-b^2=-1
b^2=1+1
b^2= 2
b=+-√2
For Postive value of b= √2
1-√2,1,1+√2.
For Postive value of b= -√2
1+√2,1,1-√2.