Solution. (Fig. 1.23)Δ' = Δ +θ = 90°+ 20° = 110°
T = R tan(Δ/2)
= 300tan((90°)/2) = 300m
VV'=(VT2 sinθ/ sinΔ')
=T. (sin 20°)/(sin110°)
= 300tan 20° = 109.2 m
Also V' T2 =VT2 . (sinbΔ)/(sin Δ')
T' = T (sin Δ)/(sin Δ')
= 300 (sin 90°)/(sin 110°)
R'(tanΔ'/2)= 300/(cos 20°)
R' = 300 cos 20° . cot((Δ')/2)
= (300 cot 55°)/(cos20°) = 223.5m
Length of new tangent t = T' = R'tan((Δ')/2)
= 223.5 tan 55° = 319.3 m
Length of new curve (πR'Δ')/(180°) = (π(223.5)(110°))/(180°) = 429.2m